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Abstract

REF.pro is a program written in IDL [1] for the calculation of reflected and
transmitted neutron intensities by imperfect crystals, i.e. crystals with a distortion
of the Bragg planes due to mosaicity, d-spacing gradient or bending.
The solutions that we have implemented in the code have a quite large application
domain, in particular they are valid for any kind of mosaic distribution, with or
without anisotropy. Moreover, any asymmetry angle of the Bragg planes can be
considered. The resulting theoretical reflectivity contains, by definition, secondary
extinction effects, but not primary extinction. However, the latter can be included
by introducing a correction factor for the Q scattering factor. The data file written
by REF.pro contains the crystal reflectivity as a function of the neutron K vector
modulus and grazing angle. Hence it can be successfully used as input file for
the McStas [2] component Monochromator reflect [3]. The development of this
code is the result of a work to better understand and describe imperfect crystals,
and mosaic crystals in primis, as they are the most commonly used as neutron
monochromators and analysers. In addition, as the performance of gradient crystals
can be assessed with good accuracy as well, the REF.pro program, used together
with Monochromator reflect, can be a valid tool for simulating the function of novel
gradient crystals in neutron scattering instruments.
The REF.pro program can be copied, corrected, extended or improved upon request
to the author (email to alianell@ill.fr).
A translation of REF.pro to the C language and the interfacing to McStas is under
development. Moreover, the program will be included in the NOP package [4] with
a graphical user interface.
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1 The theoretical background and the algorithm.

Theory and definitions.

A mosaic crystal can be seen as an agglomeration of perfect small crystallites. The

coherence effects which can be observed in the diffraction by perfect crystals are lost in

the case of mosaic crystals because of the randomness in the crystallite distribution. Pri-

mary extinction is a dynamical diffraction effect and represents the strong attenuation of

the beam in a perfect crystal. Typical primary extinction depths text are of the order of

few µm. The phenomenon of the attenuation of the beam due to diffraction by a mosaic

crystal is called secondary extinction. This attenuation is weaker than primary extinction

in perfect crystals and involves larger crystal volumes (the typical penetration length due

to secondary extinction is of order 1 cm). As a matter of fact, the presence of primary

extinction competes with secondary extinction and therefore decreases the reflectivity of

the mosaic crystal. The multiple Bragg reflections in a mosaic crystal and the concept of

secondary extinction are summarised by the Darwin’s equations [5, 6]. An exact and gen-

eral solution of these equations has been given by Sears [7]. The physical quantities which

govern diffraction by a mosaic crystal are the scattering coefficient σ and the attenuation

coefficient µ. The Bragg scattering coefficient is written as

σ = Q·W (θ − θB) (1)

with the scattering factor Q given by:

Q = λ3F 2
hkl/

(
V 2

0 sin 2θB

)
(2)

In these equations λ represents the wavelength, Fhkl the structure factor, θB the Bragg

angle and V0 the unit cell volume. According to Zachariasen [5] the correction for primary

extinction consists of a smaller scattering factor Q. We denote by t the perfect crystallite

thickness and by text the primary extinction depth. The actual Q is decreased by a factor

f(A), where A = t/text. In Bragg geometry (see Fig. 1 for the definition of geometry) the

correction to Q is:

f(A) =
tanhA+ | cos 2θB| tanh |A cos 2θB|

A(1 + cos2 2θB)
(3)

If the thickness of the mosaic blocks t is much smaller than the primary extinction depth

text, the primary extinction corrections are not necessary. Otherwise, the actual Q is

decreased by a factor f(A), which can be used as input for REF.pro. We will give

examples for the numerical values of f(A) in section 4.

The mosaic crystal theory assumes that perfect crystallites are oriented almost parallel

to the crystal surface (for the Bragg case) following a mosaic distribution W (θ − θB), θ
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being the angle formed by the incident beam and the Bragg planes. W (θ − θB) is usually

written as a Gaussian and the full-width-at-half-maximum η is called the intrinsic mosaic

spread or intrinsic mosaicity. The case of anisotropic mosaic distributions is handled,

in the REF.pro program, by using a probability distribution that depends also on the

crystallite azimuthal angle φ:

W (θ, φ) = c·e−4 log 2 [ sin
2 φ

η2
s

+ cos2 φ

η2
p

] (θ−θB)2

(4)

where ηs and ηp are the FWHMs in the scattering plane and perpendicular to it, respec-

tively and c is a constant giving the correct normalization of W . Different shapes of W

can of course be used, for example Lorentzian or pseudo-Voigt (i.e. a combination of

Gaussian and Lorentzian). This option is not included, but can easily be implemented.

Figure 1: Illustration of Bragg and Laue cases and definition of the asymmetry angle α.

In the Bragg symmetric geometry the asymmetry angle is α = 0o. In the Laue symmetric

geometry the asymmetry angle is α = 90o. The dotted lines represent Bragg planes.

The attenuation coefficient µ is the sum of nuclear absorption, incoherent scattering,

parasitic Bragg scattering, and thermal diffuse scattering (TDS):

µ =
n

V0
(σabs + σinc + σpar + σTDS) (5)

In the last equation n/V0 is the number of atoms or molecules per unit cell volume.
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The nuclear absorption cross-section σabs does not depend on the temperature and has a

simple dependence on energy except for some well known resonant cases.

The parasitic Bragg scattering cross-section σpar is more difficult to calculate. Simultane-

ous diffraction occurs when a single crystal is orientated in a neutron or x-ray monochro-

matic beam so that two, or more, sets of planes simultaneously satisfy Bragg’s law. This

can be observed experimentally when the crystal is orientated to diffract from a particular

set of Bragg planes, and is rotated slowly around the the diffraction vector: changes in

the intensity can be observed because Bragg’s law can be simultaneously satisfied for a

different set of planes [8]. In the case of mosaic crystals this effect is observed on a wave-

length range larger than that of perfect crystals because of the presence of misoriented

blocks. The consequences for the reflectivity of mosaic crystals are discussed in [9]. The

calculation of σpar is not included in REF.pro. However, an estimation can be assessed

by using the NOP [4] module MAMON.

The TDS cross-section can be calculated as the sum of single phonon and multiple phonon

cross-sections:

σTDS = σsingle−ph + σmulti−ph (6)

There are different approaches and approximations to the problem of TDS [10, 11, 12,

13]: all the authors, except for Binder [13] who gives the coherent cross-section for a

polycrystal, use the incoherent approximation for the multi-phonon processes, i.e. they

disregard all restrictions coming from the momentum conservation and give a non-zero

partial differential cross-section in all scattering directions. This gives the correct result

at energies much higher than the Debye energy. At lower energy the main contribution

to σTDS is the single phonon scattering cross-section σsingle−ph which can be calculated

without approximations. At intermediate energies coherence effects, i.e. interference of

scattering from different sites have to be considered, but they amount to only a few

percent of the total cross-section [11]. We report here the formula given by Freund [14]

for the total multi-phonon cross-section:

σmulti−ph = σ0 {1 − exp [−C2E (B0 +B (T ))]} (7)

In this equation σ0 is the sum of the coherent and incoherent cross-sections for the nucleus,

the C2 parameter has to be determined experimentally for each material and B0+B (T ) is

the mean square atomic displacement. The energy dependence of σabs and of (σabs+σTDS)

for copper at 15K and 290K, calculated using Eq. (7) for the multi-phonon contribution,

and with using the C2 reported by Freund [14], is plotted in Fig. 2. The figure shows

that TDS effect has to be included, even at low temperature.

If we define a = µd/ sinψ and s = σd/ sinψ, with d being the crystal thickness and ψ

the angle formed by the incident beam and the surface, the Sears’ equations [7] for the
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reflected and transmitted beam in symmetric Laue (transmission) and Bragg (reflection)

geometries are:

RLaue symm =
1

2
e−a

(
1 − e−2s

)
(8)

TLaue symm =
1

2
e−a

(
1 + e−2s

)
(9)

RBragg symm =
s√

a(a + 2s) coth
√
a(a+ 2s) + (a+ s)

(10)

TBragg symm =

√
a(a + 2s)√

a(a+ 2s) cosh
√
a(a+ 2s) + (a+ s) sinh

√
a(a+ 2s)

(11)

The model we have discussed is valid if the mosaicity is much larger than the Darwin

width of the perfect crystal.

Figure 2: Total attenuation cross-sections σabs +σTDS for copper. The line on the bottom

represents the true absorption cross-section σabs. The temperature dependent σTDS was

calculated using the model developed by Freund [14].
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The algorithm.

The algorithm used in REF.pro is based on the layer-coupling model [15, 16], which

can be considered to be the discrete form of the Darwin’s equations. For a mosaic crystal

without bending or d-spacing gradient, the model gives results that are equivalent to the

analytical solution of the Darwin’s equations [7]. If the mosaic crystal is also bent or has

a d-spacing gradient, then the diffraction planes change orientation or d-spacing from one

layer to the next. The solution is found by assuming the crystal to be ideally divided into

regions, or layers, whose properties remain locally unchanged. The final crystal reflectivity

is calculated with the following algorithm:

1) a set of optical matrices for the crystal is written. Each matrix contains the infor-

mations on the local absorption and scattering properties of the crystal layer. This means

that a crystal with a d-spacing or mosaicity which depend on the position along its depth

can be described. These quantities (i.e. mosaicity and d-spacing gradient) can have the

desired behaviour, for example linear, quadratic or step-like.

2) the solution is found by recursively multiplying the matrices for the different layers

and by applying the boundary conditions.

P0,n and PH,n are the power of the incident and diffracted beam at the n-th layer. In

Bragg geometry the equations are the following:

P0,n = T0,nP0,n−1 +DH,nPH,n (12)

PH,n−1 = D0,nP0,n−1 + TH,nPH,n

D0/H,n is the probability of the incident/reflected beam being diffracted and not being

absorbed by the n-th layer.

T0/H,n is the probability of the beam being transmitted by the n-th layer.

The Darwin equations take the form:


 P0,n

PH,n


 =


 T0,n − D0,nDH,n

TH,n

DH,n

TH,n

−D0,n

TH,n

1
TH,n





 P0,n−1

PH,n−1


 (13)

The solution at the last layer is:


 P0,N

PH,N


 =


 M11 M12

M21 M22





 P0,0

PH,0


 (14)

where the Mij matrix is obtained by iterating the Eq. (13). In the Bragg geometry we

have PH,N = 0, then the reflecting power is:

PH,0

P0,0
= −M21

M22
(15)
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The diffraction and transmission probabilities of the n-th layer can be written as:

D0,n =
σntn
cos θ0

e
− µtn

cos θ0 (16)

DH,n =
σntn

| cos θH |e
− µtn

| cos θH |

T0,n = (1 −D0,n) e
− µtn

cos θ0

TH,n = (1 −DH,n) e
− µtn

| cos θH |

tn is the thickness of the n-th layer,

θ0 is the angle of incidence (i.e. 900− asymmetry angle −θB),

θH is the angle of reflection,

σn = Q·W (∆θn) is the equivalent of the secondary extinction coefficient for the n-th

layer.

The deviation ∆θn from the nominal Bragg angle θB, at the n-th layer, is:

∆θn = ∆θ1 ± εn (17)

where ∆θ1 is the deviation at the first layer. The + sign is for the bent crystal in Bragg

geometry and for the gradient crystal in any geometry, the − sign for bent crystal in Laue

geometry. The deviation εn depends on the type of deformation (bending or d-spacing

gradient):

εn =




1
R

∑n
i=1 ti

[
tan θ0 +

(
sin2 χ− ν cos2 χ

)
tan θB + 1

2
(1 + ν) sin 2χ

]
Bent

εn = − tan θB
dhkl, n−dhkl

dhkl
Gradient

(18)

with χ depending on the asymmetry angle α:

χ =



π/2 − α Laue case

α Bragg case
(19)

In the last equations R is the bending radius, dhkl the d-spacing, ν is the Poisson ratio

(defined as the lateral contraction per unit breadth divided by the longitudinal extension

per unit length, ν = 0.22 for silicon and 0.27 for germanium) and α is the asymmetry

angle as defined in Fig. 1. In the case of assembled wafer crystals, there can be an

additional deviation δn from the nominal Bragg angle due to different mosaicities of the

wafers. This effect can be included as well.
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2 The input parameters.

The program can be executed by opening an IDL session and typing:

IDL> .run REF

The input parameters are:

1) Crystal material, Bragg indices, thickness.

The materials cross-sections database includes at the moment: beryllium, copper,

lead, silicon, germanium, graphite, nickel, fluorite. Other materials can be included upon

request.

2) Asymmetry angle α, i.e. angle between Bragg planes and crystal surface (clock wise

positive, see Fig. 1).

3) Mosaicity in the scattering plane and perpendicular to the scattering plane.

4) Correction factor f(t/text). Correcting Q corresponds to a correction of the primary

extinction effect. If the correction factor is set equal to 1 then there is no correction for

primary extinction (see section 4).

5) Average wavelength, wavelength range and number of points N for wavelength.

6) Angular range.

7) Type of deformation:

7.a) Bending: bending radius and Poisson ratio.

7.b) d-spacing gradient: total variation of the d-spacing over the entire crystal thick-

ness.

REF.pro can be executed without an IDL licence as an XOP [17] macro. For Windows

platforms, the user has to edit the program and insert the input parameters in it.

The transcription of the IDL session for computing the diffraction profile of Cu < 220 >,

with a gradient d-spacing (see the examples in section 3) is reported below.
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IDL> .run REF

This program calculates the reflectivity of a mosaic gradient crystal

or a mosaic bent crystal using the layer-coupling model.

PLEASE REFER TO L. Alianelli, A routine for the computation of

imperfect crystal reflectivity, ILL technical report ILL03AL05T, 2003.

REFERENCES:

(1) H.C. Hu

J. Appl. Cryst. (1992) 25, 731-736

(2) H.C. Hu

J. Appl. Cryst. (1993) 26, 251-257

********************************

INDEX MATERIAL

0 Beryllium

1 Copper

3 Lead

4 Silicon

5 Germanium

6 Graphite

11 Nickel

12 CaF2

********************************

ENTER THE MATERIAL INDEX: 1

ENTER h Miller index: 2

ENTER k Miller index: 2

ENTER l Miller index: 0

ENTER THICKNESS (cm): 0.8

ENTER THE ASYMMETRY ANGLE (DEG): 0

ENTER MOSAICITY in the scattering plane (FWHM, DEGREES): .05

ENTER MOSAICITY in the plane perpendicular to scattering (FWHM, DEGREES): .05

ENTER correction for Q: 1

ENTER average wavelength (A): 1.8

ENTER wavelength range (A): 0

ENTER number of points for wavelength: 1

ENTER angular range (deg): 3

ENTER 0 FOR BENT, 1 FOR GRADIENT: 1

ENTER THE TOTAL VARIATION OF dhkl (A): .02
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3 The program output. Examples

The results are written in an ascii file REF.dat with N blocks. Each block has four

columns:

1st column: K = 2π/λ in Å−1. K is constant within each block.

2nd column: grazing angle in degrees (automatically includes the asymmetry angle α

as illustrated in Fig. 1).

3rd column: reflectivity in the scattering plane.

4th column: reflectivity perpendicular to the scattering plane.

An additional TRA.dat file is written by REF.pro: the columns 3 and 4 represent the

transmitted (i.e. attenuated) intensity. Hence TRA.dat might be used for assessing the

intensity of the beam that is transmitted by the crystal, and accounts for absorption,

TDS and Bragg scattering. Typical examples of mosaic copper reflected and transmit-

ted intensities, calculated with REF.pro, are reported in Fig. 3 (REF.dat data in the

top, TRA.dat data in the bottom). One consequence of the Darwin’s equations is clearly

seen in the figures: anomalous absorption, which is not to be confused with the Bor-

rmann anomalous absorption observed in perfect crystals, is present in Bragg geometry

(R+ T �= e−a, see also Eqs. (10) and (11)), but not in Laue geometry (R+ T = e−a, see

also Eqs. (8) and (9)). The typical asymmetric shapes of the deformed (i.e. gradient or

bent) crystals diffraction profiles are depicted in Fig. 4. The reflected intensity subtracted

by primary extinction is larger for the gradient crystal case (d-spacing gradient of 1.6 %

and total width of the diffraction profile ∼ 1o) than for the bent crystal case (bending

radius of 5 m and total width of the diffraction profile ∼ 0.2o), because the deformation is

stronger. A bent crystal with R = 0.5 m would have approximately the same diffraction

profile as the gradient crystal in Fig. 4 (left) and the same reduction of reflectivity, due

to primary extinction. In other words, with a given crystallite size t, the reduction of the

peak reflectivity is the same if the reflectivity profile is the same, regardless of the kind

of deformation (bending or gradient). The interesting question, in order to determine t,

is how the production and deformation process affects the perfect crystallites size. It is

clear that by controlling this parameter (i.e. producing imperfect crystals with t as small

as possible) higher peak reflectivities can be obtained.
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Figure 3: Imperfect crystal diffraction calculated with REF.pro: Cu <220>, λ = 1.8

Å, η = 0.1o, d = 0.8 cm, Bragg (left) and Laue (right) symmetric geometry. TOP:

reflectivity. BOTTOM: transmitted intensity.

Figure 4: Imperfect crystal reflectivity calculated with REF.pro: Cu <220>, λ = 1.8

Å, η = 0.05o, d = 0.8 cm, Bragg symmetric geometry. LEFT: gradient crystal with

∆dhkl/dhkl = 1.6 %. RIGHT: bent crystal with R = 5 m.
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4 Correcting for primary extinction.

The diffraction properties of imperfect crystals suffer from non-ideal behaviour. There can

be several sources of imperfections: non-homogeneity of the mosaic structure and primary

extinction are two examples. The first can be simulated using the Monte Carlo method

[18, 19]. The latter is successfully described by the theory [5]. Examples of numerical

values for correcting the Q factor, as a function of the crystallite size and for some Bragg

angles, are reported in the Tables A, B, C for the case of mosaic copper, germanium and

highly oriented pyrolityc graphite respectively.

Table A. Mosaic copper: primary extinction corrections for some reflections and Bragg

angles in Bragg symmetric geometry.

hkl text [µm] Crystallite size t [µm] λ [Å] θBragg [deg] f(t/text)

111 3.7 5 1.05 14.6 0.67

1.53 21.5 0.69

10 1.05 14.6 0.39

1.53 21.5 0.41

15 1.05 14.6 0.26

1.53 21.5 0.28

200 4.2 5 0.8 12.8 0.715

1.4 22.8 0.74

10 0.8 12.8 0.43

1.4 22.8 0.46

15 0.8 12.8 0.29

1.4 22.8 0.32

220 6.0 5 0.4 9 0.825

0.8 18.2 0.84

10 0.4 9 0.57

0.8 18.2 0.595

15 0.4 9 0.40

0.8 18.2 0.43
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Table B. Mosaic germanium: primary extinction corrections for some reflections and

Bragg angles in Bragg symmetric geometry.

hkl text [µm] Crystallite size t [µm] λ [Å] θBragg [deg] f(t/text)

111 6.0 5 1.9 16.9 0.84

10 1.9 16.9 0.59

15 1.9 16.9 0.42

311 11.5 5 1.28 22.0 0.95

2.994 61.4 0.95

10 1.28 22.0 0.83

2.994 61.4 0.835

15 1.28 22.0 0.70

2.994 61.4 0.71

335 23 5 1.514 61.3 0.99

10 1.514 61.3 0.95

15 1.514 61.3 0.90

Table C. Examples of primary extinction corrections for highly oriented pyrolytic graphite

in Bragg symmetric geometry.

hkl text [µm] Crystallite size t [µm] λ [Å] θBragg [deg] f(t/text)

002 2.0 1 4.4 41.1 0.93

5 4.4 41.1 0.405

004 3.9 1 2.2 41.1 0.98

5 2.2 41.1 0.67

The effect of primary extinction on the reflectivity of deformed crystals.

Fig. 5 clearly shows the importance of primary extinction on the reflectivity of a gradient

crystal. The plotted intensities are the simulated values, divided by the source intensity,

hence there is no scaling factor. They have been obtained using three completely differ-

ent numerical methods: McStas with Monochromator reflect and the REF.dat datafile

(dotted and solid lines), a full Monte Carlo calculation (+ symbols), and the the RE-

STRAX code [20] (dashed line, data provided by J. Saroun). As the general agreement is

very good, we can conclude that the methods used are detailed and realistic. We assume

that the McStas data obtained by including primary extinction (solid line) represent the

correct model (because the RESTRAX and full Monte Carlo data shown in the same fig-

ure do simulate the crystallite size, with different methods). The comparison shows that

there is a discrepancy concerning the peak value of the diffraction profiles. The full Monte

Carlo and the RESTRAX data are very similar. The McStas peak reflectivity (solid line)

is smaller. A possible explanation of the disagreement could be the following: mosaicity
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is very small, the crystal layers are almost perfect, and the one that is the closest to the

crystal surface diffracts according to dynamical diffraction, i.e. with a peak reflectivity

close to 1 (Monte Carlo and RESTRAX results). In the REF.dat data, instead (which

are used in the simulations with Monochromator reflect), the diffraction probabilities are,

by definition, convoluted with mosaicity and are not able to show the effect of a possible

presence of layers that are almost perfect. In other words, the disagreement could reflect

a failure of the mosaic model, due to the very small mosaicity.

Figure 5: Diffraction profiles of gradient Cu <220>, λ = 1.8 Å, η = 3′ = 0.05o,

∆dhkl/dhkl = 1.6 %, d = 1 cm, Bragg symmetric geometry. The data have been ob-

tained by using McStas with two new crystal modules Monochromator reflect [3] (based

on a reflectivity datafile created with REF.pro) and Imperfect Crystal.comp (full Monte

Carlo calculation, see [19]). The RESTRAX [20] data have been provided by J. Saroun.
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5 Conclusions

The REF.pro program is a valid tool for estimating the reflectivity of imperfect crystals

commonly used as neutron monochromators and analysers. The main use of REF.pro

at the moment is for creating datafiles being used by the McStas component Monochro-

mator reflect. These datafiles represent the crystal reflectivity calculated with the most

detailed theories and cross-sections.
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[19] L. Alianelli, M. Sánchez del Ŕıo, R. Felici, K. Andersen and E. Farhi, “A novel

Monte Carlo algorithm for simulating crystals with McStas”, accepted for publication

by Physica B, Proceedings of the ECNS2003 Conference.

[20] J. Saroun and J. Kulda, “RESTRAX - a program for TAS resolution calculation

and scan profile simulation”, Physica B: Condensed Matter 234-236, pp. 1102-1104,

1997.



Appendix - REF.pro source file 17

A Appendix - REF.pro source file

print,’ ’

PRINT,’This program calculates the reflectivity of a mosaic gradient crystal’

print,’or a mosaic bent crystal using the layer-coupling model.’

print,’ ’

print,’PLEASE REFER TO L. Alianelli, A routine for the computation of ’

print,’imperfect crystal reflectivity, ILL technical report ILL03AL05T, 2003.’

print,’ ’

PRINT,’REFERENCES:’

print,’ ’

PRINT,’(1) H.C. Hu’

print,’J. Appl. Cryst. (1992) 25, 731-736’

print,’ ’

PRINT,’(2) H.C. Hu’

print,’J. Appl. Cryst. (1993) 26, 251-257’

print,’ ’

print,’ ’

print,’ *********************************’

print,’ INDEX MATERIAL ’

print,’ 0 Beryllium ’

print,’ 1 Copper ’

;print,’ 2 Niobium ’

print,’ 3 Lead ’

print,’ 4 Silicon ’

print,’ 5 Germanium ’

print,’ 6 Graphite ’

;print,’ 7 Bismuth ’

;print,’ 8 Quartz ’

;print,’ 9 Sapphire ’

;print,’ 10 MgF2 ’

print,’ 11 Nickel ’

print,’ 12 CaF2 ’

print,’ *********************************’

print,’ ’

read,i,prompt=’ENTER THE MATERIAL INDEX: ’

print,’ ’

read,h,prompt=’ENTER h Miller index: ’
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print,’ ’

read,k,prompt=’ENTER k Miller index: ’

print,’ ’

read,l,prompt=’ENTER l Miller index: ’

print,’ ’

read,d,prompt=’ENTER THICKNESS (cm): ’

print,’ ’

N_lay=500.*d

;read,E,prompt=’ENTER energy (eV): ’

;print,’ ’

delmu=0.0

;read,delmu,prompt=’enter delta mu (cm-1)’’

read,alpha,prompt=’ENTER THE ASYMMETRY ANGLE (DEG): ’

print,’ ’

;read,T,prompt=’ENTER TEMPERATURE (K) : ’

;print,’ ’

T = 298.

read,tau_z,prompt=’ENTER MOSAICITY in the scattering plane (FWHM, DEGREES): ’

print,’ ’

read,tau_y,prompt=’ENTER MOSAICITY in the plane perpendicular to scattering (FWHM, DE

print,’ ’

read,corr,prompt=’ENTER correction for Q: ’

print,’ ’

read,lambda0,prompt=’ENTER average wavelength (A): ’

print,’ ’

read,delta_lambda,prompt=’ENTER wavelength range (A): ’

print,’ ’

lambda_p = 1L

read,lambda_p,prompt=’ENTER number of points for wavelength: ’

print,’

read,range,prompt=’ENTER angular range (deg): ’

print,’

k_bol = 0.86174D-4 ;Boltzmann constant eV K-1

E0 = 0.0818D ;Conversion factor: energy (eV) at 1 Angstrom

PI = 3.14159265358979323846

tp = 2.D*PI

DEG2RAD = (PI/180.)

alpha = alpha*DEG2RAD ;Angle between Bragg planes and crystal surface

GEOM = 0.
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DEF = 0.

R_curv = 0.

delta_d_hkl = 0.

Poisson = 0.

chi = 0.

d = d*1.D+8 ;Angstrom

di = DblArr(N_lay)+d/N_lay ;layer thickness (A)

dth = DblArr(N_lay)

alpha1_p = 201

delta = DblArr(alpha1_p,N_lay)

W_z = DblArr(alpha1_p,N_lay)

W_y = DblArr(alpha1_p,N_lay)

sigma_bragg_z = DblArr(alpha1_p,N_lay)

sigma_bragg_y = DblArr(alpha1_p,N_lay)

D_0_z = DblArr(alpha1_p,N_lay)

D_0_y = DblArr(alpha1_p,N_lay)

D_H_z = DblArr(alpha1_p,N_lay)

D_H_y = DblArr(alpha1_p,N_lay)

Da_0_z = DblArr(alpha1_p,N_lay)

Da_0_y = DblArr(alpha1_p,N_lay)

Da_H_z = DblArr(alpha1_p,N_lay)

Da_H_y = DblArr(alpha1_p,N_lay)

Ta_0_z = DblArr(alpha1_p,N_lay)

Ta_0_y = DblArr(alpha1_p,N_lay)

Ta_H_z = DblArr(alpha1_p,N_lay)

Ta_H_y = DblArr(alpha1_p,N_lay)

MATR_z = DblArr(alpha1_p,N_lay,2,2)

MATR_y = DblArr(alpha1_p,N_lay,2,2)

M_z = DblArr(2,2)

M_y = DblArr(2,2)

Mal_z = DblArr(2,2)

Mal_y = DblArr(2,2)

REF_z = DblArr(alpha1_p)

REF_y = DblArr(alpha1_p)

TRA_z = DblArr(alpha1_p)

TRA_y = DblArr(alpha1_p)

corrTRA_z = DblArr(alpha1_p)

corrTRA_y = DblArr(alpha1_p)

ddd_z = Dblarr(N_lay)

ddd_y = Dblarr(N_lay)
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ddd_z=FindGen(N_lay)*di(0)+di(0)

ddd_y=FindGen(N_lay)*di(0)+di(0)

sigma_s_z = Dblarr(alpha1_p)

sigma_s_y = Dblarr(alpha1_p)

read,DEF,prompt=’ENTER 0 FOR BENT, 1 FOR GRADIENT: ’

IF (DEF EQ 0.) THEN read,R_curv,prompt=’ENTER THE RADIUS OF CURVATURE (m): ’

IF (DEF EQ 0.) THEN read,poisson,prompt=’ENTER THE POISSON RATIO: ’

IF (DEF EQ 1.) THEN read,delta_d_hkl,prompt=’ENTER THE TOTAL VARIATION OF d_hkl (A):

tau_z = tau_z*DEG2RAD ;Mosaicity in rad, FWHM

tau_y = tau_y*DEG2RAD ;Mosaicity in rad, FWHM

h=h*1.D

k=k*1.D

l=l*1.D

;angular range

range = range*DEG2RAD ;angular range in rad

alpha1_max = range/2.

alpha1 = FindGen(alpha1_p)*2.*alpha1_max/(alpha1_p-1.)-alpha1_max

peak = where(abs(alpha1) EQ min(abs(alpha1)))

coh_sig = DblArr(13)

inc_sig = DblArr(13)

sig_abs0 = DblArr(13)

A_mass = DblArr(13)

T_deb = DblArr(13)

n_over_V = DblArr(13)

V0 = DblArr(13)

C2 = DblArr(13)

b_c = DblArr(13)

F_hkl0 = DblArr(13)

REF_hkl0 = DblArr(13)

IMF_hkl0 = DblArr(13)

a_cell = DblArr(13)

b_cell = DblArr(13)

c_cell = DblArr(13)

alpha_cell = DblArr(13)

beta_cell = DblArr(13)
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gamma_cell = DblArr(13)

d_spacing = DblArr(13)

;*************Materials parameters**************************

; 1 Beryllium

; Structure: Hexagonal

coh_sig(0) = 7.63D

inc_sig(0) = 0.0018D

sig_abs0(0) = 0.0056D

A_mass(0) = 9.01D

T_deb(0) = 1100.D

C2(0) = 7.62D

a_cell(0) = 2.2866D ;cell parameter (A)

b_cell(0) = 2.2866D

c_cell(0) = 3.5833D

alpha_cell(0) = 90.*DEG2RAD

beta_cell(0) = 90.*DEG2RAD

gamma_cell(0) = 120.*DEG2RAD

d_spacing(0) = 1./sqrt(4./3.*(h*h+h*k+k*k)/a_cell(0)+l*l/c_cell(0))

V0(0)=a_cell(0)^2*c_cell(0)*sin(60.*DEG2RAD)

;n_over_V(0) = 0.1234D ;Number of atoms per unit cell volume (A-3)

n_over_V(0) = 2./V0(0)

b_c(0) = 1.D-4*SQRT(coh_sig(0)/(4.D*PI)) ;bound coherent scattering in A

x1=h*.333333+k*.666667+l*0.25

x2=h*.666667+k*.333333+l*0.75

REF_hkl0(0) = b_c(0)*(cos(tp*x1)+cos(tp*x2))

IMF_hkl0(0) = b_c(0)*(sin(tp*x1)+sin(tp*x2))

F_hkl0(0) = SQRT(REF_hkl0(0)^2.+IMF_hkl0(0)^2.)

; 2 Cu

; Structure: Cubic

coh_sig(1) = 7.485D ;COPPER cross sections

inc_sig(1) = 0.55D ;barn

sig_abs0(1) = 2.094D ;True absorption at 1 Angstrom

A_mass(1) = 63.54D ;Mass in 12C units

T_deb(1) = 300.D ;Debye temperature

C2(1) = 12.D ;C2 parameter (A-2 eV-1), see ref 1)
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a_cell(1) = 3.61496D ;cell parameter (A)

b_cell(1) = 3.61496D

c_cell(1) = 3.61496D

alpha_cell(1) = 90.*DEG2RAD

beta_cell(1) = 90.*DEG2RAD

gamma_cell(1) = 90.*DEG2RAD

d_spacing(1) = a_cell(1)/sqrt(h*h+k*k+l*l)

;n_over_V(1) = 0.0847D ;Number of atoms per unit cell volume (A-3)

V0(1) = a_cell(1)^3.

n_over_V(1) = 4./V0(1)

b_c(1) = 1.D-4*SQRT(coh_sig(1)/(4.D*PI)) ;bound cohe scatter length in A

x1=.0

x2=k*.5+l*.5

x3=h*.5+l*.5

x4=h*.5+k*.5

REF_hkl0(1) = b_c(1)*(cos(tp*x1)+cos(tp*x2)+cos(tp*x3)+cos(tp*x4))

IMF_hkl0(1) = b_c(1)*(sin(tp*x1)+sin(tp*x2)+sin(tp*x3)+sin(tp*x4))

F_hkl0(1) = SQRT(REF_hkl0(1)^2.+IMF_hkl0(1)^2.)

; 3 Niobium

;

;coh_sig(2) = 6.253D

;inc_sig(2) = 0.0024D

;sig_abs0(2) = 0.6390D

;A_mass(2) = 92.91D

;T_deb(2) = 280.D

;n_over_V(2) = 0.0556D

;C2(2) = 23.50D

;d_cell(2) = 3.3004D ;cell parameter (A)

;b_c = 1.D-4*SQRT(coh_sig/(4.D*PI)) ;bound coherent scattering length in A

; 4 Lead

; Structure: Cubic

coh_sig(3) = 11.115D

inc_sig(3) = 0.003D

sig_abs0(3) = 0.0928D

A_mass(3) = 207.21D

T_deb(3) = 280.D

C2(3) = 150.D
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a_cell(3) = 4.9508D ;cell parameter (A)

b_cell(3) = 4.9508D

c_cell(3) = 4.9508D

alpha_cell(3) = 90.*DEG2RAD

beta_cell(3) = 90.*DEG2RAD

gamma_cell(3) = 90.*DEG2RAD

V0(3) = a_cell(3)^3.

n_over_V(3) = 4./V0(3)

;n_over_V(3) = 0.0323D

b_c(3) = 1.D-4*SQRT(coh_sig(3)/(4.D*PI)) ;bound coher scatt length in A

x1=.0

x2=k*.5+l*.5

x3=h*.5+l*.5

x4=h*.5+k*.5D

REF_hkl0(3) = b_c(3)*(cos(tp*x1)+cos(tp*x2)+cos(tp*x3)+cos(tp*x4))

IMF_hkl0(3) = b_c(3)*(sin(tp*x1)+sin(tp*x2)+sin(tp*x3)+sin(tp*x4))

F_hkl0(3) = SQRT(REF_hkl0(3)^2.+IMF_hkl0(3)^2.)

; 5 Silicon

; Structure: Cubic

coh_sig(4) = 2.163D

inc_sig(4) = 0.004D

sig_abs0(4) = 0.0889D ;Freund’s paper, printing mistake?

sig_abs0(4) = 0.0951D ;Neutron news

A_mass(4) = 28.09D

T_deb(4) = 420.D

C2(4) = 6.36D

a_cell(4) = 5.43070D ;cell parameter (A)

b_cell(4) = 5.43070D

c_cell(4) = 5.43070D

alpha_cell(4) = 90.*DEG2RAD

beta_cell(4) = 90.*DEG2RAD

gamma_cell(4) = 90.*DEG2RAD

d_spacing(4) = a_cell(4)/sqrt(h*h+k*k+l*l)

V0(4) = a_cell(4)^3.

n_over_V(4) = 8./V0(4)

;n_over_V(4) = 0.0499D

b_c(4) = 1.D-4*SQRT(coh_sig(4)/(4.D*PI)) ;bound cohe scatte length in A

x1=.0
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x2=k*.5+l*.5

x3=h*.5+l*.5

x4=h*.5+k*.5

x5=h*.25+k*.25+l*.25

x6=h*.25+k*.75+l*.75

x7=h*.75+k*.25+l*.75

x8=h*.75+k*.75+l*.25

REF_hkl0(4) = b_c(4)*(cos(tp*x1)+cos(tp*x2)+cos(tp*x3)+cos(tp*x4)+cos(tp*x5)+cos(tp*x6

IMF_hkl0(4) = b_c(4)*(sin(tp*x1)+sin(tp*x2)+sin(tp*x3)+sin(tp*x4)+sin(tp*x5)+sin(tp*x6

F_hkl0(4) = SQRT(REF_hkl0(4)^2.+IMF_hkl0(4)^2.)

; 6 Germanium

; Structure: Cubic

coh_sig(5) = 8.42D

inc_sig(5) = 0.18D

sig_abs0(5) = 1.2160D

A_mass(5) = 72.60D

T_deb(5) = 290.D

C2(5) = 9.00D

a_cell(5) = 5.65735D ;cell parameter (A)

b_cell(5) = 5.65735D

c_cell(5) = 5.65735D

alpha_cell(5) = 90.*DEG2RAD

beta_cell(5) = 90.*DEG2RAD

gamma_cell(5) = 90.*DEG2RAD

d_spacing(5) = a_cell(5)/sqrt(h*h+k*k+l*l)

V0(5) = a_cell(5)^3.

n_over_V(5) = 8./V0(5)

;n_over_V(5) = 0.0442D

b_c(5) = 1.D-4*SQRT(coh_sig(5)/(4.D*PI)) ;bound coher scat length in A

x1=.0

x2=k*.5+l*.5

x3=h*.5+l*.5

x4=h*.5+k*.5

x5=h*.25+k*.25+l*.25

x6=h*.25+k*.75+l*.75

x7=h*.75+k*.25+l*.75

x8=h*.75+k*.75+l*.25

REF_hkl0(5) = b_c(5)*(cos(tp*x1)+cos(tp*x2)+cos(tp*x3)+cos(tp*x4)+cos(tp*x5)+cos(tp*x6
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IMF_hkl0(5) = b_c(5)*(sin(tp*x1)+sin(tp*x2)+sin(tp*x3)+sin(tp*x4)+sin(tp*x5)+sin(tp*x6

F_hkl0(5) = SQRT(REF_hkl0(5)^2.+IMF_hkl0(5)^2.)

; 7 Graphite

; Structure: Hexagonal

coh_sig(6) = 5.551D

inc_sig(6) = 0.001D

sig_abs0(6) = 0.0018D

A_mass(6) = 12.D

T_deb(6) = 1050.D

C2(6) = 20.D

a_cell(6) = 2.456D ;cell parameter (A)

b_cell(6) = 2.456D

c_cell(6) = 6.696D

alpha_cell(6) = 90.*DEG2RAD

beta_cell(6) = 90.*DEG2RAD

gamma_cell(6) = 120.*DEG2RAD

d_spacing(6) = 1./sqrt(4./3.*(h*h+h*k+k*k)/(a_cell(6))^(2.)+l*l/(c_cell(6))^(2.))

V0(6)=a_cell(6)^2*c_cell(6)*sin(60.*DEG2RAD)

n_over_V(6) = 4./V0(6)

;n_over_V(6) = 0.1136D

b_c(6) = 1.D-4*SQRT(coh_sig(6)/(4.D*PI)) ;bound co scatt length in A

x1=.0

x2=l*.5

x3=h*.333333+k*.666667

x4=h*.666667+k*.333333+l*0.5

REF_hkl0(6) = b_c(6)*(cos(tp*x1)+cos(tp*x2)+cos(tp*x3)+cos(tp*x4))

IMF_hkl0(6) = b_c(6)*(sin(tp*x1)+sin(tp*x2)+sin(tp*x3)+sin(tp*x4))

F_hkl0(6) = SQRT(REF_hkl0(6)^2.+IMF_hkl0(6)^2.)

; 8 Bismuth (uncomplete)

;

;coh_sig(7) = 9.148D

;inc_sig(7) = 0.0084D

;sig_abs0(7) = 0.0200D

;A_mass(7) = 209.D

;T_deb(7) = 300.D

;n_over_V(7) = 0.0323D

;C2(7) = 110.D



Appendix - REF.pro source file 26

;d_cell(7) = 1.D ;cell parameter (A)

;b_c = 1.D-4*SQRT(coh_sig/(4.D*PI)) ;bound coherent scattering length in A

;

; 9 Quartz (uncomplete)

;

;coh_sig(8) =

;inc_sig(8) =

;sig_abs0(8) = 0.0889D

;A_mass(8) = 20.03D

;T_deb(8) = 500.D

;n_over_V(8) = 0.0266D

;C2(8) = 8.5D

;d_cell(8) = 1.D ;cell parameter (A)

;b_c = 1.D-4*SQRT(coh_sig/(4.D*PI)) ;bound coherent scattering length in A

;

;

; 10 Sapphire (uncomplete)

;

;coh_sig(9) = .0D

;inc_sig(9) = .0D

;sig_abs0(9) = 0.2556D

;A_mass(9) = 20.39D

;T_deb(9) = 1040.D

;n_over_V(9) = 0.0236D

;C2(9) = 4.60D

;d_cell(9) = 1.D ;cell parameter (A)

;b_c = 1.D-4*SQRT(coh_sig/(4.D*PI)) ;bound coherent scattering length in A

;

; 11 MgF2 (uncomplete)

; Structure: Tetragonal

;

;coh_sig(10) =.

;inc_sig(10) =

;sig_abs0(10) = 0.0461D

;A_mass(10) = 20.77D

;T_deb(10) = 440.D

;n_over_V(10) = 0.0298D

;C2(10) = 6.D

;d_cell(10) = 1.D ;cell parameter (A)
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;b_c = 1.D-4*SQRT(coh_sig/(4.D*PI)) ;bound coherent scattering length in A

;

; 12 Nickel

; Structure: Cubic

coh_sig(11) = 13.3D

inc_sig(11)= 5.2D

sig_abs0(11)= 2.4972D

A_mass(11) = 58.69D

T_deb(11) = 400.D

C2(11) = 11.176D

a_cell(11) = 3.524D ;cell parameter (A)

b_cell(11) = 3.524D

c_cell(11) = 3.524D

alpha_cell(11) = 90.*DEG2RAD

beta_cell(11) = 90.*DEG2RAD

gamma_cell(11) = 90.*DEG2RAD

d_spacing(11) = a_cell(11)/sqrt(h*h+k*k+l*l)

V0(11) = a_cell(11)^3.

n_over_V(11) = 4./V0(11)

;n_over_V(11) = 0.0914D

b_c(11) = 1.D-4*SQRT(coh_sig(11)/(4.D*PI))

x1=.0

x2=k*.5+l*.5

x3=h*.5+l*.5

x4=h*.5+k*.5

REF_hkl0(11) = b_c(11)*(cos(tp*x1)+cos(tp*x2)+cos(tp*x3)+cos(tp*x4))

IMF_hkl0(11) = b_c(11)*(sin(tp*x1)+sin(tp*x2)+sin(tp*x3)+sin(tp*x4))

F_hkl0(11) = SQRT(REF_hkl0(11)^2.+IMF_hkl0(11)^2.)

; 13 Fluorite CaF2

; Structure: Cubic

Fcoh_sig = 4.017

Finc_sig = 0.0008

Cacoh_sig = 2.78

Cainc_sig = 0.05

coh_sig(12) = 10.8140
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inc_sig(12) = 0.0516

sig_abs0(12) = 0.249833

A_mass(12) = 10000000000000.0 ;SEARCH DATA

T_deb(12) = 400.D

C2(12) = 0.0 ;SEARCH DATA

a_cell(12) = 5.46295D*(1.+1.9406D-5*(T-298.)+1.8744D-8*(T-298.)^2.) ;cell parameter (

b_cell(12) = 5.46295D*(1.+1.9406D-5*(T-298.)+1.8744D-8*(T-298.)^2.) ;cell parameter (

c_cell(12) = 5.46295D*(1.+1.9406D-5*(T-298.)+1.8744D-8*(T-298.)^2.) ;cell parameter (

alpha_cell(12) = 90.*DEG2RAD

beta_cell(12) = 90.*DEG2RAD

gamma_cell(12) = 90.*DEG2RAD

d_spacing(12) = a_cell(12)/sqrt(h*h+k*k+l*l)

V0(12) = a_cell(12)^3.

n_over_V(12) = 12./V0(12)

Cab_c = 1.D-4*SQRT(Cacoh_sig/(4.D*PI)) ;bound coher scat length in A

Fb_c = 1.D-4*SQRT(Fcoh_sig/(4.D*PI)) ;bound coher scat length in A

b_c(12) = 1.D-4*SQRT(coh_sig(12)/(4.D*PI)) ;bound coher scat length in A

x1=.0

x2=h*.25+k*.25+l*.25

x3=h*.25+k*.75+l*.25

REF_hkl0(12) = Cab_c*cos(tp*x1)+Fb_c*(cos(tp*x2)+cos(tp*x3))

IMF_hkl0(12) = Cab_c*sin(tp*x1)+Fb_c*(sin(tp*x2)+sin(tp*x3))

F_hkl0(12) = 4.D*SQRT(REF_hkl0(12)^2.+IMF_hkl0(12)^2.)

coh_sig = coh_sig(i)

inc_sig = inc_sig(i)

sig_abs0 = sig_abs0(i)

A_mass = A_mass(i)

T_deb = T_deb(i)

n_over_V = n_over_V(i)

V0 = V0(i)

C2 = C2(i)

b_c = b_c(i)

F_hkl0 = F_hkl0(i)

d_hkl = d_spacing(i)

;************** Freund, NIM (1983):********

B_zero = 2873./(T_deb*A_mass)

sig_bat = coh_sig+inc_sig
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X = T_deb/T

y = DblArr(5001)

fact = dblArr(23)

fact(0) = 1.

fact(1) = 1.

fact(2) = 2.

fact(4) = 4.*3.*fact(2)

fact(6) = 6.*5.*fact(4)

fact(8) = 8.*7.*fact(6)

fact(10) = 10.*9.*fact(8)

fact(12) = 12.*11.*fact(10)

fact(14) = 14.*13.*fact(12)

fact(16) = 16.*15.*fact(14)

fact(18) = 18.*17.*fact(16)

fact(20) = 20.*19.*fact(18)

fact(22) = 22.*21.*fact(20)

be = DblArr(23)

rr = DblArr(23)

y = FIndGen(5001)*x/5000.

y(0) = 0.001*y(1)

fy = y/(exp(y)-1.)

phix = (INT_TABULATED(y,fy,/double))/x

IF (x GE 7.0) THEN phix = 1.642/x

B_T = 4.*B_zero*phix/x

DW = exp(-(B_zero+B_T)/(2.D*d_hkl)^2.) ;Debye Waller factor

be(0) = 1.

rr(0) = be(0)*x^(-1.)/(fact(0)*(5./2.))

be(1) = -0.5

rr(1) = be(1)*x^(1.-1.)/(fact(1.)*(1.+5./2.))

FOR ii = 1,11 DO BEGIN

sum = 0.0D

FOR mm = 1,100 DO BEGIN

sum = sum + 1.0/mm^(2.0*ii)

ENDFOR

be(2*ii) = (-1.)^(ii-1.)*2.*fact(2*ii)/(2.*PI)^(2.*ii)*sum ;Bernoulli numbers

rr(2*ii) = be(2*ii)*x^(2.*ii-1.)/(fact(2*ii)*(2.*ii+5./2.))

if (2*ii eq 22) then rr(2*ii) = rr(2*ii)/2.

ENDFOR

r_sum = 0.D

r_sum = total(rr)



Appendix - REF.pro source file 30

F_hkl = F_hkl0*DW ;structure factor

;**************************************************

; open datafiles for writing

openw,lunR,’REF.dat’,/get_lun

openw,lunT,’TRA.dat’,/get_lun

;printf,lunR,alpha1_p, alpha1_p*lambda_p+1, 0, 0

;**************************************************

theta_bragg0 = ASIN(lambda0/(2.D*d_hkl)) ;rad

IF (theta_bragg0 LT alpha) THEN BEGIN ;LAUE

GEOM = -1.

index = N_lay-1

ENDIF ELSE BEGIN

GEOM = 1. ;Bragg

index = 0

ENDELSE

chi = PI/2.*(1.-GEOM)/2.+GEOM^3.*alpha

lambda_min = lambda0 - delta_lambda/2.

lambda_max = lambda0 + delta_lambda/2.

dlam = delta_lambda/(lambda_p-1.)

if (lambda_p eq 1) then dlam=0.0

;Start lambda loop

FOR kk = 0,lambda_p-1 DO BEGIN

lambda = lambda_max-kk*dlam

E = E0/lambda/lambda

theta_bragg = ASIN(lambda/(2.D*d_hkl)) ;rad

sig_abs = sig_abs0*lambda

phi = alpha + theta_bragg+alpha1 ;See Fig.1 of Sears

phi_p = abs(alpha - theta_bragg-alpha1)

csi = SIN(phi)/SIN(phi_p)

;************** Freund, NIM (1983):********

sig_sph =sig_bat/(36.*A_mass)*sqrt(k_bol*T_deb/E)*3.3/x^(7./2.)

IF (x LE 6.) THEN sig_sph=sig_bat /(36.*A_mass)*sqrt(k_bol*T_deb/E)*r_sum

sig_mph=(A_mass/(A_mass+1.))^2.*sig_bat*(1.-exp(-(B_zero+B_T)*C2*E))
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;*****************************************************************************

QQ = corr*(lambda)^3.D*F_hkl^2./V0^2./SIN(2.D*theta_bragg)

QQzero = corr*(lambda)^3.D*F_hkl0^2./V0^2./SIN(2.D*theta_bragg)

sig_tds = sig_sph +sig_mph

sig_tot = inc_sig+sig_tds + sig_abs

mu = n_over_V*sig_tot+delmu ;cm-1

;************* here deformed crystal calculation*****************

theta_0 = PI/2.-alpha-theta_bragg

theta_H = PI/2.+GEOM*abs(alpha-theta_bragg)

b_asymm = COS(theta_0)/COS(theta_H)

a_0 = DblArr(N_lay)+mu*1.D-8*di/COS(theta_0)

a_H = DblArr(N_lay)+mu*1.D-8*di/abs(COS(theta_H))

ex_a_0 = EXP(-a_0)

ex_a_H = EXP(-a_H)

IF (DEF EQ 0.) THEN BEGIN

csi_g = TAN(theta_0)

csi_d = (SIN(chi)*SIN(chi)-poisson*COS(chi)*COS(chi))*TAN(theta_bragg)+0.5*(1.+pois

epsilon = (FindGen(N_lay)+1.)*di/(R_curv*1.D+10)*(csi_g+csi_d)

FOR aa=0,alpha1_p-1 DO BEGIN

delta(aa,*) = alpha1(aa)+GEOM*epsilon(*)

ENDFOR

ENDIF ELSE BEGIN

dth = FindGen(N_lay)*delta_d_hkl/(N_lay-1.)/d_hkl*TAN(theta_bragg)

FOR aa=0,alpha1_p-1 DO BEGIN

delta(aa,*) = alpha1(aa)+dth(*)

ENDFOR

ENDELSE

FOR aa=0,alpha1_p-1 DO BEGIN

W_z(aa,*) = SQRT(4.*ALOG(2.)/PI)/tau_z*EXP(-delta(aa,*)^2*4.*ALOG(2.)/tau_z^2)

W_y(aa,*) = SQRT(4.*ALOG(2.)/PI)/tau_y*EXP(-delta(aa,*)^2*4.*ALOG(2.)/tau_y^2)

ENDFOR

; Different normalisation of W for different description of anisotropic mosaicity

; and giving unique peak reflectivity

;if (tau_z ne tau_y) then begin
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; FOR ee=0,N_lay-1 DO BEGIN

; mwz = MAX(W_z(*,ee))

; mwy = MAX(W_y(*,ee))

; W_z(*,ee) = W_z(*,ee)/mwz*(mwz+mwy)/2.

; W_y(*,ee) = W_y(*,ee)/mwy*(mwz+mwy)/2.

; ENDFOR

;endif else begin

;endelse

FOR aa=0,alpha1_p-1 DO BEGIN

D_0_z(aa,*) = QQ*W_z(aa,*)*di(*)/COS(theta_0)

D_0_y(aa,*) = QQ*W_y(aa,*)*di(*)/COS(theta_0)

D_H_z(aa,*) = QQ*W_z(aa,*)*di(*)/abs(COS(theta_H))

D_H_y(aa,*) = QQ*W_y(aa,*)*di(*)/abs(COS(theta_H))

Da_0_z(aa,*) = D_0_z(aa,*)*ex_a_0(*)

Da_0_y(aa,*) = D_0_y(aa,*)*ex_a_0(*)

Da_H_z(aa,*) = D_H_z(aa,*)*ex_a_H(*)

Da_H_y(aa,*) = D_H_y(aa,*)*ex_a_H(*)

Ta_0_z(aa,*) = (1.-D_0_z(aa,*))*ex_a_0(*)

Ta_0_y(aa,*) = (1.-D_0_y(aa,*))*ex_a_0(*)

Ta_H_z(aa,*) = (1.-D_H_z(aa,*))*ex_a_H(*)

Ta_H_y(aa,*) = (1.-D_H_y(aa,*))*ex_a_H(*)

ENDFOR

;***************************************************************************

sigma_bragg_z = QQ*W_z

sigma_bragg_y = QQ*W_y

IF (theta_bragg LT alpha) THEN BEGIN ;LAUE

FOR aa=0,alpha1_p-1 DO BEGIN

MATR_z(aa,*,0,0) = Ta_0_z(aa,*)

MATR_y(aa,*,0,0) = Ta_0_y(aa,*)

MATR_z(aa,*,1,0) = Da_H_z(aa,*)

MATR_y(aa,*,1,0) = Da_H_y(aa,*)

MATR_z(aa,*,0,1) = Da_0_z(aa,*)

MATR_y(aa,*,0,1) = Da_0_y(aa,*)

MATR_z(aa,*,1,1) = Ta_H_z(aa,*)

MATR_y(aa,*,1,1) = Ta_H_y(aa,*)

M_z(*,*) = MATR_z(aa,0,*,*)
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M_y(*,*) = MATR_y(aa,0,*,*)

FOR ll=1,N_lay-1 DO BEGIN

Mal_z(*,*) = MATR_z(aa,ll,*,*)

Mal_y(*,*) = MATR_y(aa,ll,*,*)

M_z(*,*)=MAl_z(*,*)##M_z(*,*)

M_y(*,*)=MAl_y(*,*)##M_y(*,*)

ENDFOR

REF_z(aa) = M_z(0,1)

REF_y(aa) = M_y(0,1)

TRA_z(aa) = M_z(0,0)

TRA_y(aa) = M_y(0,0)

ENDFOR

ENDIF ELSE BEGIN ;Bragg

FOR aa=0,alpha1_p-1 DO BEGIN

MATR_z(aa,*,0,0) = Ta_0_z(aa,*)-Da_0_z(aa,*)*Da_H_z(aa,*)/Ta_H_z(aa,*)

MATR_y(aa,*,0,0) = Ta_0_y(aa,*)-Da_0_y(aa,*)*Da_H_y(aa,*)/Ta_H_y(aa,*)

MATR_z(aa,*,1,0) = Da_H_z(aa,*)/Ta_H_z(aa,*)

MATR_y(aa,*,1,0) = Da_H_y(aa,*)/Ta_H_y(aa,*)

MATR_z(aa,*,0,1) = -Da_0_z(aa,*)/Ta_H_z(aa,*)

MATR_y(aa,*,0,1) = -Da_0_y(aa,*)/Ta_H_y(aa,*)

MATR_z(aa,*,1,1) = 1./Ta_H_z(aa,*)

MATR_y(aa,*,1,1) = 1./Ta_H_y(aa,*)

M_z(*,*) = MATR_z(aa,0,*,*)

M_y(*,*) = MATR_y(aa,0,*,*)

FOR ll=1,N_lay-1 DO BEGIN

Mal_z(*,*) = MATR_z(aa,ll,*,*)

Mal_y(*,*) = MATR_y(aa,ll,*,*)

M_z(*,*)=Mal_z(*,*)##M_z(*,*)

M_y(*,*)=Mal_y(*,*)##M_y(*,*)

ENDFOR

REF_z(aa) = -M_z(0,1)/M_z(1,1)

REF_y(aa) = -M_y(0,1)/M_y(1,1)

TRA_z(aa) = M_z(0,0)+REF_z(aa)*M_z(1,0)

TRA_y(aa) = M_y(0,0)+REF_y(aa)*M_y(1,0)

ENDFOR

ENDELSE

peak_ind = WHERE(REF_z EQ max(REF_z),count)

dpeak = peak - peak_ind

;corrected 30 Sept 2003:

corrTRA_z(*) = TRA_z(*)*EXP(mu*1.D-8*d/cos(theta_0))*EXP(-mu*1.D-8*d/cos(theta_0-delt
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corrTRA_y(*) = TRA_y(*)*EXP(mu*1.D-8*d/cos(theta_0))*EXP(-mu*1.D-8*d/cos(theta_0-delt

print,’ ’

print,’ ’

print,’thickness (cm) ’,d*1.D-8

print,’(hkl) ’,h,k,l

print,’d_hkl (Angstrom) ’,d_hkl

print,’energy (eV) ’,E

print,’wavelength/A ’,lambda

print,’Bragg angle/deg ’,theta_bragg/DEG2RAD

print,’F_hkl/angstrom ’,F_hkl

print,’T/K ’,T

print,’Debye Waller factor ’,DW

print,’Q (cm-1) ’,QQ*1.D+8

print,’Attenuation sig_tot(barn) ’,sig_tot

print,’Attenuation mu(cm-1) ’,mu

print,’secondary ext. coeff. (cm-1) ’,max(QQ*W_z)*1.D+8

print,’sec. ext. length (cm) ’,1./max(QQ*W_z)*1.d-8

print,’sec. ext. depth (cm) ’,1./max(QQ*W_z)*1.d-8*cos(theta_0)

print,’Layer thickness (cm) ’,di(0)*1.d-8

print,’Asymmetry factor b ’,b_asymm

print,’mosaicity in scattering plane (deg) ’,tau_z/DEG2RAD

print,’peak reflectivity in scatt. plane ’,max(ref_z)

print,’mosaicity perp. to scatt. plane (deg) ’,tau_y/DEG2RAD

print,’peak reflectivity perp. to scatt. plane ’,max(ref_y)

print,’ ’

FOR hh = dpeak(0),alpha1_p-1 DO BEGIN

printf,lunR,2.*PI/lambda,(theta_bragg+delta(hh,index)+alpha)/DEG2RAD,ref_z(hh-dpeak

printf,lunT,2.*PI/lambda,(theta_bragg+delta(hh,index)+alpha)/DEG2RAD,corrtra_z(hh-dp

ENDFOR

ENDFOR

;end of lambda loop

free_lun,lunR

print,’ ’

print,’This program writes the results in a file called REF.dat ’

print,’There are four columns:’

print,’1rst column: K = 2*PI/wavelength [Angstrom-1]’

print,’2nd column: grazing angle [degrees], including possible asymmetry angle’
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print,’3rd column: reflectivity corresponding to mosaicity in scattering plane’

print,’4th column: reflectivity corresponding to mosaicity in plane perpendicul

print,’ ’

print,’There is an additional file TRA.dat with’

print,’cols 3 and 4 representing the transmitted’

print,’(i.e. attenuated because of absorption + ’

print,’TDS + Bragg scattering) intensity.’

print,’ ’

print,’ ’

END


